
J .  Fluid Mech. (1993), vol. 255, p p .  157-182 
Copyright 0 1993 Cambridge University Press 

157 

Tearing of an aligned vortex by a current difference 
in two-layer quasi-geostrophic flow 
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A study of two-layer quasi-geostrophic vortex flow is performed to determine the effect 
of a current difference between the layers on a vortex initially extending through both 
layers. In particular, the conditions under which the vortex can resist being torn by the 
current difference are examined. The vortex evolution is determined using versions of 
the contour dynamics and discrete vortex methods which are modified for two-layer 
quasi-geostrophic flows. The vortex response is found to depend upon the way in which 
the current difference between the layers is maintained. In the first set of flows studied, 
the current difference is generated by a (stronger) third vortex in the upper layer 
located at a large distance from the (weaker) vortex under study. Flows of this type are 
important for understanding the interactions of vortices of different sizes in geophysical 
turbulence. A set of flows is also considered in which an ambient geostrophic current 
difference is produced by a non-uniform background potential vorticity field. In this 
case, an additional (secondary) flow field about the vortex patch in each layer is 
generated by redistribution of the ambient potential vorticity field. 

It is found that a vortex that initially extends through both layers will undergo a 
periodic motion, in which the two parts of the initial vortex in the different layers 
(called the ‘upper’ and ‘lower’ vortices) oscillate about each other, provided that the 
current difference between the layers is less than a critical value. When the current 
difference exceeds this critical value, the upper and lower vortices separate permanently 
and the initial vortex is said to ‘tear’. The effects of various dimensionless parameters 
that characterize the flow are considered, including the ratio of core radius to internal 
Rossby radius, the ratio of layer depths and the ratio of the strengths of the upper and 
lower vortices. These parameters affect both the critical current difference for tearing 
and the deformation of the vortex cores by their interaction. It is found that for small 
values of inverse internal Rossby deformation radius, calculations with circular non- 
deformable vortices (convected at their centrepoints) give results in good agreement 
with the contour dynamics simulations, since the vortex deformation is small. The 
results of the study will be useful in determining the conditions under which large 
geophysical vortex structures, such as cyclones and ocean rings, can extend to large 
heights (depths) even though the mean winds (currents) in the ambient flow change 
significantly along the vortex length. 

1. Introduction 
The atmosphere and oceans are often modelled, for purposes of geophysical flow 

calculation, by a set of nearly homogeneous layers separated by regions of strong 
density stratification, where the stratified regions are usually taken to be of infinitesimal 
thickness. Large-scale oceanic flows, for instance, can be crudely modelled using a two- 
layer system consisting of a shallow surface layer and a much deeper ‘deep-water’ layer 
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separated by the ‘ thermocline ’. Vortices in geophysical systems (with constant Coriolis 
parameter) consist of a region of potential vorticity surrounded by fluid with a different 
potential vorticity (not necessarily uniform), where we recall that potential vorticity is 
an invariant of motion for inviscid flows with small Rossby number. A vortex whose 
potential vorticity exists in one layer can cause motion of the fluid in adjoining layers 
by displacement of the interface separating the layers. Two vortices in different layers 
can thus induce motion of each other and interact in much the same way as a vortex 
pair in usual two-dimensional hydrodynamics. The ‘heton’ described by Hogg & 
Stommel(1985), which consists of a translating pair of vortices with opposite potential 
vorticity in two different layers, provides a well-known example of baroclinic vortex 
interaction. 

The general equations for two-layer quasi-geostrophic flow can be found in the text 
by Pedlosky (1979, pp. 386-394). A study of interaction of systems of singular quasi- 
geostrophic vortices in two-layer systems is given by Gryanik (1983), including a 
Hamiltonian formulation. The stability of quasi-geostrophic vortices with finite core 
radius is studied by Helfrich & Send (1988) and Flierl (1988), both analytically and 
numerically, using a contour dynamics method adopted for two-layer geostrophic 
flows. It is found that a necessary condition for instability of a system consisting of an 
upper-layer vortex positioned directly above a lower-layer vortex, in which both 
vortices are initially circular and have the same core radii, is that the potential vorticity 
of the vortices (minus that in the ambient flow) must be of opposite sign. Merger of 
vortices in two layers is studied by Polvani, Zabusky & Flierl (1989) and Polvani 
(1991), again using the contour dynamics approach. Of particular interest in this work 
is the finding that two vortices in different layers, in which the vortex centres are 
initially separated by some distance d,, may ‘align’ over each other in a process that 
appears very similar to merger of two vortices in ordinary two-dimensional 
hydrodynamics. Results for vortices with equal potential vorticity show that alignment 
occurs only for a range of intermediate separation distances in which the vortex centres 
are neither too close together nor too far apart and for a range of dimensionless 
internal Rossby radii less than some critical value. Some experiments demonstrating 
heton formation and vortex merger in two-layer rotating systems were performed by 
Griffiths & Hopfinger (1986, 1987). 

Reznik (1992) and Gryanik (1986) extended the singular vortex analysis for single- 
layer quasi-geostrophic flows to include the beta-effect. In this case, the ambient flow 
field has a non-uniform potential vorticity due to the beta-effect, and the redistribution 
of this ambient potential vorticity by the singular vortices generates a secondary flow 
about the vortices (which Reznik calls the ‘regular’ flow). Although it does not seem 
to have been studied previously in any depth, a mean unidirectional current difference 
between the layers of a two-layer quasi-geostrophic flow in anf-plane can be generated 
by a non-uniform ambient potential vorticity field, and vortex motion superimposed 
on such a current would also produce a secondary flow about the vortices. 

Geophysical vortex formation and motion is a major contributor to fluid mixing and 
heat transfer both between different vertical layers in the oceans and atmosphere and 
between adjacent water or air masses. Horizontal mixing of water masses due to 
oceanic ‘rings’, formed by dynamic instabilities of currents, and tropical cyclones in 
the atmosphere play an important role in modifying the climate of local regions and 
in providing a net transfer of heat toward the poles. Vertical mixing by atmospheric 
cyclones causes cloud formation, which both provides fresh water transfer and 
increases the atmospheric absorption and backscatter of long-wave radiant energy. 
Vertical mixing (or ‘deep water production’) in the oceans is important in determining 
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the rate of average temperature change of the Planet due to variation of the net radiant 
energy balance, since the oceanic deep water is the major planetary thermal energy 
storage reservoir. Deep water production in the open ocean has frequently been 
associated with intense eddies passing through the entire water column, which may 
form convective ‘chimneys ’ that are thought to be responsible for open-ocean 
polynyas (Gordon 1978; Killworth 1979) or may form as topographically trapped 
eddies within a Taylor column (Hogg 1973; Eide 1979). 

In both the oceans and the atmosphere, the intense eddies responsible for vertical 
mixing usually extend entirely through two or more stratified layers, even though the 
mean currents may be very different in the layers. On the other hand, less intense 
eddies, which may cause horizontal but not usually vertical mixing between layers, 
often exist in only one layer, and are therefore not subject to a large current variation 
along their lengths. This observation is the motivation for the present research. In 
particular, we seek to determine the conditions such that a vortex which initially 
extends through two layers (or in which the upper and lower layer vortices are initially 
aligned) will remain aligned (or nearly so) when a mean current difference is applied 
between the layers. 

The vortex response to the current difference is found to depend somewhat on the 
manner in which the current difference is generated. In the present paper, we first 
consider cases in which the current difference between the layers is generated by a third, 
and much stronger, vortex located in the upper layer at a large distance from the vortex 
under consideration. This problem is important for understanding interaction of 
vortices of different strengths in geophysical turbulence. The tearing of the vortex is 
first studied using three circular vortices, convected at their central points, which 
demonstrates the main phenomenon under consideration. Calculations are then 
performed using the contour dynamics and vortex ‘cloud’ methods to determine the 
effect of vortex deformation on these results. It is found that when the current 
difference between the layers is less than some critical value (which varies with vortex 
strength and core radius and with ambient oceanic conditions), the vortices in the two 
layers will undergo a periodic oscillation in which the maximum distance separating the 
vortex centres is proportional to the mean current difference. For sufficiently small 
current differences (or for sufficiently intense vortices), the amplitude of the periodic 
motion is so small that the vortex will appear to simply extend through the layers with 
little effect of the mean currents. If the current difference is above this critical value, 
however, the vortices in the two layers separate permanently, in which case we say that 
the current ‘tears’ the vortex. 

Next, calculations are performed to study vortex tearing for the case in which the 
current difference is maintained by a non-uniform background potential vorticity 
distribution. This problem is important for determining the effect of mean geostrophic 
currents (winds) on large-scale vortices in the oceans and atmosphere. The 
redistribution of the background potential vorticity field causes a secondary flow to 
form about the vortices, but the response of the vortices to the current difference is 
similar to that in the three-vortex problem. 

The general equations governing quasi-geostrophic vortex flow and their solutions 
in terms of Green’s functions are recalled in $2 of the paper. Two different approaches 
to numerical solution of these equations are described in $3, using a contour dynamics 
approach and a discrete vortex algorithm adapted to two-layer quasi-geostrophic 
flows. A finite-difference algorithm for solution of the secondary flow field due to 
redistribution of a non-uniform ambient potential vorticity is also described in $3. 
Numerical and analytical results for cases with three circular vortices, which 
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demonstrate the main phenomenon under consideration, are presented in $4. In $ 5 ,  the 
effect of core deformation on these results is studied using contour dynamics and 
vortex 'cloud' simulations, again for the three-vortex interaction problem. In $ 6 ,  the 
effect of secondary flow caused by a non-uniform background potential vorticity field 
is studied. Conclusions of the study are given in $7. 

2. Basic theory 
The governing equations for quasi-geostrophic two-layer flow in an f-plane for cases 

in which the density difference Ap is small compared to the density p in either layer are 
given by Pedlosky (1979) as 

In (l), $, is the stream function in layer n, where n = 1 for the upper layer and n = 
2 for the lower layer, defined by u, = --d$,/ay and v, = a$,/ax, and q, is the 
potential vorticity at some point x (multiplied by the equilibrium layer depth and 
minus the Coriolis parameter). For a quasi-geostrophic flow, qn is independent of time 
at any given material point. The internal Froude numbers F, for the two layers are 
defined by 

wheref, is the (constant) Coriolis parameter, R is the initial eddy radius (which is taken 
to be the same for all eddies), H ,  is the ambient depth of layer n and g' is the reduced 
gravity gAp/p. It is clear that F, is simply the square of the eddy core radius divided 
by the internal Rossby radius of the layer. We non-dimensionalize all length variables 
by R and all time variables by a timescale T, which will be specified later in the paper. 
Velocities are non-dimensionalized by RIT, and stream functions by R2/T, and so on. 
A schematic diagram of the initial configuration for the two-layer vortex pair given in 
figure 1 illustrates the various flow parameters. 

The two layers communicate with each other by a displacement qI of the interface 
separating the layers. The bottom surface of the lower layer is taken as horizontal and 
fixed, but the top surface of the upper layer may be displaced by an amount yT. The 
surface displacements are related to the stream functions $n by 

F, =f,"R2/g'Hn, (2) 

T I  =fc($2-$l)/g', T T  = f c $ l / g '  (3) 
We note that T~ will be much greater than y T  whenever Ap 4 p,  such that g' Q g, which 
is assumed throughout the paper. 

An alternative form of these equations can be written in terms of the barotropic and 
baroclinic stream functions $B and $T, respectively, and potential vorticities qB and 
qT,  defined by 

$B = $1+ $2/', @T = $1- $2, (4 4 
q B  = qI+q2/', qT = 41-42, (4 b) 

v2$B = q B ,  v2$llr,- k2$T = q T ,  ( 5 4  b) 

where S = HJH, is the height ratio. Using (4), (1) gives independent equations for $B 

and as 

where k2 = E; +I;z. 
In solving (5),  we first consider cases where q, vanishes outside compact (vortical) 

regions, which will be used in $54 and 5 of the paper. For later convenience, we attach 
a subscript v to variables such as $, q and the horizontal velocity components u and 
v to denote the contributions from the vortices in the flow. Equation ( 5 )  can be solved 
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FIGURE 1 .  Schematic showing the initial configuration of the aligned vortex pair with two-layer 
density stratification and current flow in the upper layer. 

using the Green's functions In (r)/2n for the barotropic component in (5a) and 
-K0(kr)/2n for the baroclinic component in ( 5  b), where KO( .) is the modified Bessel 
function of the second kind, giving solutions of the form 

(6 b) 

where r2 = : ~ - o ~ - t ( y - - ) ~ ] .  Substituting expressions for qT, and qBw into (6)  and 
taking (-a 8y, a/ax), after using (4), gives the velocity field (u,, u,) in the two layers. 

The simp :st potential vorticity distribution that admits core deformation is that in 
which the potential vorticity is uniform within one or more regions C, and is equal to 
another constant (which can be taken as zero without loss in generality) outside of C,. 
In this case, Green's theorem can be used to convert the integrals in (6a,  b) over qBw 
and qTw to integrals over the contour C,. The resulting solution for the components u,, 
and u,, of the velocity field (in layer n)  generated by the vortices is given by 

1 " "  
@TV(X,Y ,  0 = -- 2n J-" Jpm qTv(S'  7, t) KO(W d5 d% 

where dg and dg are the components of an infinitesimal vector dx along C, in the x- 
and y-directions, respectively, and the integration is performed in a counterclockwise 
direction. The components a,, and b,, are defined by 

["" a',.] - - [ -4v1 - Y u 2 / q  
a2,1 a2,2 -4w1 -4w2/s ' 

-4w1 4w2 
For cases in which a non-uniform background potential vorticity field exists, a 

secondary flow about the vortices is generated by redistribution of the background 
potential vorticity by the vortex motion. In the case under consideration in 56 of the 
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paper, the potential vorticities qn are chosen initially as the sum of that for a vortex of 
unit radius centred at the origin with uniform potential vorticity within its core and 
that for a uniform current difference AU in the x-direction between the layers. The 
initial potential vorticity field is thus given by 

qn(0) = qvn(0) + qcn(O),  qcn(0) = -(- 11, F,(AU)Y, (8) 
where q,,(O) vanishes for Y > 1 and is constant for r d 1. 

We note that qn is constant at a material point (or dq,/dt = 0). At any later time t, 
the potential vorticity field qn is decomposed as the sum of the part q,, due to the 
vortices, the part qcn required to produce a uniform current in the upper layer, and the 
part qsn due to redistribution of the non-uniform ambient potential vorticity field by 
the vortices. The part qvn, which is taken to be invariant at a material point, will be 
uniform inside some material region bounded by the closed curve C,(t) and zero 
outside this region, where C, initially coincides with the unit circle. To produce a 
uniform current in the surface layer, the part qcn must equal its initial value qcn(0) for 
all later times, so it will in general vary with time at a material point as the fluid 
particles are deflected by the vortex flow fields. The part q,, is determined from the 
condition that dq,/dt vanish everywhere in the flow, such that the sum qcn + qsn is 
invariant at each material point. Initially qsn vanishes, but as the vortices distort the 
uniform current a non-zero qsn field will form to create a secondary flow about the 
vortices. From the requirement that the total potential vorticity qn is invariant at each 
material point, and since qvn is also invariant, the material derivative of qen + qsn must 
vanish everywhere. Using (8) for q,,, an equation to determine qsn is obtained as 

where u, and v, are the components of the total velocity field u,. 
The stream function $, in each layer can also be decomposed as the sum of a part 

$un related to the vortex-induced flow, a part $,, due to the uniform current in the 
upper layer and a part $sn due to the secondary flow about the vortices. Each of these 
parts $,,, kcn and $sn satisfies (1) with qn replaced by the respective part qvn, qcn or 
qsn. A solution for $cn yielding a uniform current in the upper layer can immediately 
be obtained as 

where C is an arbitrary constant. Barotropic and baroclinic potential vorticities and 
stream functions can be defined for both the vortex-induced flow and the secondary 
flow as in (4a, b) to yield decoupled equations similar to those in (5). Solutions for $,, 
are the same as displayed in ( 6 4  and (6b). Since qvn are still chosen to be uniform 
within a closed contour C,, we can still use Green's theorem to transform the surface 
integral in (6) into a contour integral for u,, and vvn, as shown in (7). The secondary 
vorticity $,, satisfies the Poisson and Helmholtz equations 

where the barotropic and baroclinic components qBs and qTs of qsn are defined 
similarly to qB and qT in (4). If we assume that qsn decays sufficiently fast at infinity, 
the Green's functions can again be used to write the solution to (11) in terms of 
integrals, with a form similar to (6), over the entire flow field. The reduction to a 
contour integral cannot be performed, since qsn varies continuously over the flow field. 
It is ofien more computationally efficient for very large grids, however, to solve (1 1) 
directly using a fast (spectral) solver for the Helmholtz equation. 

$c, = C-(AU)Y, +,z = c, (10) 

v2$Bs = q B s ,  v2$Ts -  k z k T s  = qTs,  (1 1) 
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3. Numerical approaches 
3.1. Contour dynamics approach to determine +v, 

To determine the velocities induced by the vortices, the integrals in (7a, b) are 
evaluated using Simpson’s rule with 50 intervals about each contour C,. The local 
singularity as ( & r ) + ( x , y )  for each position on the contour is integrable and is 
evaluated explicitly. The points on the contours are convected as material points in the 
flow, so that the motion of each point (x,(t),y,(t)) on C,(t) is given by 

where u, and v,  are the components of the total velocity vector. The solution for x, 
and y ,  is advanced in time using a two-step predictor-corrector method. The timescale 
T is set equal to T = (1 + 6)/(6q,, + qv2), and the reason for this choice is explained in 
$4. The dimensionless timestep At was fixed at 0.1 for all runs. Variation of the timestep 
within a factor of 5 of the value used produces no detectable change in the results. 

The contours C ,  tend to become jagged and then to break up after some time during 
the computation. We attribute this instability to filamentation of the vortex, as 
observed by Polvani (1991) and Pullin (1992), which occurs at scales smaller than that 
used to discretize the contours. While filamentation is a physical effect, rather than an 
artifact of the numerical method, it does not usually occur until late in the runs and 
does not seem to be important for the tearing phenomenon under consideration in the 
paper. To delay instability of the vortex contour, the changes in the contours are 
smoothed at every timestep using a spectral filter suggested by Orszag & Gottlieb 
(1980). In this filter, the contour is represented by a Fourier series which is truncated 
after 10 modes, and then the Fourier coefficients of the higher-order modes are made 
to decrease gradually to zero before the contour positions are reformulated. Use of the 
filter is partially justified by the close comparison between the contour dynamics and 
discrete vortex simulations. 

The computations were tested by comparing with Polvani’s (1991) simulations of 
vortex alignment in two layers and by comparison with the analytical solution for a 
two-layer geostrophic circular vortex given by Helfrich & Send (1988). The area of the 
vortices was also computed during the calculations and found to change by less than 
5 % prior to onset of the instability described in the previous paragraph. 

3.2. Discrete vortex approach to determine +,, 
A two-layer geostrophic version of the discrete vortex method is used as an alternative 
numerical approach which does not require filtering and which will admit filamentation 
and breakup of the vortex patches in the two layers. In this approach, we represent 
each vortex patch as a cloud of singular vortices, such that qvn becomes 

where sn is the strength and xn(t) the position of the ith vortex in layer n.  The strengths 
of all point vortices are constant in time and are prescribed to be uniform in a given 
layer, denoted by s,. The point vortex strength s, is set such that if N point vortices 
are used to represent the initially circular vortex patch with potential vorticity qvn in 
layer n, then s, = qv,/2N. 
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FIGURE 2. Close-up view (from above) showing the initial placement of singular 
vortices in a vortex patch. 

Each singular vortex of strength s, in layer n induces a circulatory velocity field 
about it centre. The velocity magnitude Vnm(r) in layer n at a distance r from the centre 
of a point vortex located in layer m is given by 

For 6 = 1, (14) reduces to the well-known form given by Hogg & Stommel (1985). 
The point vortices are convected as material points in the flow, and their motion is 

advanced with time using a two-step predictor-corrector algorithm. Clouds of 61 point 
vortices are used in the calculations for both upper- and lower-layer vortex patches. 
The point vortices are distributed evenly across the vortex patch in the initial 
configuration, as shown in figure 2, in order to achieve a uniform potential vorticity 
distribution. The timestep is At = 0.1, which is the same as used in the contour 
dynamics computations. The predictions of the discrete vortex method were checked 
by comparison with results for heton pairs by Hogg & Stommel (1985) and with the 
results from the contour dynamics simulations. The Hamiltonian for two-layer quasi- 
geostrophic systems of point vortices (Gryanik 1983) was found to be conserved in 
these calculations to better than one part in 1000. 

3.3. Finite-diflerence approach to determine $sn 

For the flows considered in $6, a secondary flow arises from redistribution of the non- 
uniform background potential vorticity field. To determine qsn at each timestep, (9) 
was solved on a grid that covered the region about the vortex patches in each layer. A 
centred three-point finite-difference approximation was used for the spatial derivatives 
and a second-order predictor-corrector scheme was used in time (in conjunction with 
the solution for $r,n). For a given q,,-field at any time, the stream function $,, of the 
secondary flow was obtained from solution of (10) using the fast (spectral) solver for 
the Helmholtz equation available through IMSL. A square grid with 65 increments on 
each side was used to span an area covering the vortices measuring 20 vortex core radii 
on each side. 
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The fast solver for the Helmholtz equations was found to produce rather noisy 
results. To reduce this noise, a low-pass spectral filter was applied to the q,,-field at 
each timestep. Alternatively, for some calculations, the time field was solved using the 
Green’s functgn solution (6), with subscript 0 replaced by subscript s, where the 
integrals were performed using the trapezoidal rule. When using this method, a coarser 
grid with 33 increments on each side was used; however, the results were much less 
noisy than those obtained by the spectral method. After appropriate filtering of the 
spectral results, the calculations obtained by the two methods were found to be very 
similar. 

4. Results for three circular vortices 
In $84 and 5 ,  we will consider a simple flow (shown in figure 3) in which two circular 

vortices, with unit core radius, are initially placed on top of each other (one in the 
upper layer and one in the lower layer), and a current difference between these vortices 
is generated by a third vortex located in the upper layer at a distance d from the first 
two vortices. It is assumed that d $ 1 and that the strength of the third vortex is large 
compared to that of the other two. In order to reduce the problem to its essential 
features, it is assumed in the present section that all vortices remain circular for all time 
and are convected at their central points. A solution of (5) for a circular (Rankine) 
vortex is given by Helfrich & Send (1988) with azimuthal velocity magnitude 

- 1 6q, r / 2  + (- &),-I qT K,(k) Z,(kr) ( r  < 1) 
‘(‘1 = I + s ( S q , / 2 r + ( - 8 ) ” q ~ z 1 ( k ) K l ( k r ~  (r  > 1). 

Using the expressions for qe and qT in (4b), the velocity magnitude due to a circular 
vortex with uniform potential vorticity qi centred at (xi, yi) in layer m and evaluated at 
a point (x, y )  in layer n can be obtained from (1 5 )  as 

(15) 

(16) 
1 (SzPm)  ri q i / 2  + (- l)m-l (- qi Kl(k)  Zl(kri) ( r  < 1) 

( r  > l), 1 + 6 i (Fm) qi /2r i  + (- l)m-l (- qi I,@) K,(kri) 

- 

K m ( r i )  = ~ 

where ri = [(xi - x ) ~  + (y i  -y)7;. Comparing (1 6) with the expression (14) for point 
vortices, we note that the baroclinic terms in the two expressions are not the same even 
for r > 1. For small values of k (i.e. for cases where the core radius is small compared 
to the internal Rossby deformation length), Z,(k) - :k and (16) and (14) become 
identical (after writing s = Bq as indicated just prior to (14)). 

The equations of motion for a three-vortex system are given by 

where ri j  is the horizontal separation distance between vortex i and vortexj and ni is 
the layer number of vortex i. We are particularly interested in cases for which d % 1, 
such that the third vortex imposes a nearly uniform current difference on the other two 
vortices of magnitude 

This limit is really only practicable for small values of k,  since K,(kd) decays as 
(7c/2kd)i e-kd for kd + 1. 

Equation (1 7) was solved using a fourth-order Runga-Kutta integration in time to 
obtain plots of the paths of the vortex centres for the initial configuration shown in 

AU = q3 Z,(k) K,(kd). (18) 
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FIGURE 3. Initial configuration for the three-vortex system. 
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FIGURE 4. Plot of vortex paths for a non-tearing case with k = 0.2, qJq2 = 1,6 = 1 ,  AU = 0.005 and 
d = 20. The initial locations of the vortices (at t = 0) are marked + and the final locations (at t = 
1600) are marked with a *. The paths of vortices numbered 1 ,2  and 3 in figure 3 are denoted by solid, 
dash-dotted and dashed curves, respectively. This convention is also followed in figures 5, 8, 10 and 
11. 

figure 3. The resulting vortex behaviour can be classified into two types, separated by 
a clear bifurcation, depending on the value of the current difference AU imposed on the 
two initially aligned vortices by the third vortex. In the first type of behaviour, the two 
initially aligned vortices oscillate about each other periodically. This periodic behaviour 
occurs when the current different AU is below some critical value AUcrit, which varies 
with parameters such as k, 6, d and the strengths of the vortices. When AU is much 
below the critical value, the maximum separation distance between the vortex centroids 
can be much less than the core radius. This type of behaviour is referred to as the non- 
tearing regime and is demonstrated in figure 4 for the parameter values (6, k, q l /q2 ,  AU, 
d )  = (1,0.2,1,0.005,20). The ‘ + ’ symbols denote the initial locations of the vortices 
(at t = 0) and the ‘ * ’ symbols denote the final locations at the end of the calculation 
(t = 1600). The two initially aligned vortices are observed to separate slightly (by a 
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FIGURE 5. Plot of vortex paths for a tearing case with AU = 0.0088 and all other parameters and 
symbols the same as in figure 4. The final locations are at t = 800. 

distance much less than d )  and then rejoin four times during the calculation. Both the 
third vortex and the two initially aligned vortices are observed to rotate in circles, but 
the distance d between the third vortex and the mean location of the first two vortices 
is nearly constant during the motion. 

As AU is raised above the critical value AUCrit, the vortex motion changes 
dramatically to a regime in which the two initially aligned vortices no longer oscillate 
about each other, but are instead torn apart by the current difference imposed by the 
third vortex. This type of behaviour is illustrated in figure 5 for the same parameter 
values as in figure 4, but with a higher current difference (AU = 0.0088). The final 
positions are at t = 800. The two initially aligned vortices separate such that the upper- 
layer vortex, which experiences a greater current from the third vortex, rotates faster 
about the third vortex than the lower-layer vortex. In this type of behaviour, the 
current difference imposed between the two initially aligned vortices is so strong that 
their mutually induced velocity is not sufficient to maintain the periodic oscillation 
about each other observed in figure 4. For short times, such as shown in figure 5,  it 
appears that the current difference has caused a permanent separation of the initially 
aligned vortices in the vortex tearing case. However, we note that any motion of a 
three-vortex system in a two-layer quasi-geostrophic flow can in general be shown to 
be periodic. (The proof, which uses an argument similar to that of Aref & Pomphrey 
1982, is based on the fact that any N-vortex problem in a two-layer quasi-geostrophic 
flow is a Hamiltonian system with three integrals in involution, from which it follows 
that the three-vortex system must be integrable.) If the computations are allowed to 
proceed for a very long time, we indeed find that the upper-layer vortex ‘laps’ the 
lower-layer vortex and for an instant the two become aligned again. This type of 
oscillation, which occurs on a very long timescale and exhibits large separation of the 
vortices, can be clearly distinguished from the short-period oscillation with small 
separation of the initially aligned vortices in the non-tearing case observed in figure 4. 
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Further insight into the nature of the periodic oscillation of the vortices in the non- 
tearing regime can be obtained by assuming that d is much larger than the separation 
distance between the two initially aligned vortices for all time, for which case the two 
initially aligned vortices and the third vortex behave approximately as a two-body 
system and the separation distance d and the rotation rate 52 of the system are 
constants. Based on this assumption, a system of equations can be obtained from (16) 
and (17) for the relative displacements 6 = x1 -x, and 7 = y1 -yZ of the first two 
vortices (which are initially zero) as 

where, with timescale T = (1 + 6)/(6ql + q,), f ( r )  depends only on k and the separation 
distance r = (t2 + y2); between the first two vortices and is defined by 

(20) 
1/2r2-(l/r)ll(k)Kl(kr) (Y > 1) 
1/2--(1/r)K1(k)I1(kr) ( r  6 1). f ( r )  = { 

A linear solution of system (19) can be obtained by noting that for small values of 
the separation distance r between the vortex centres, (20) becomes 

f ( r )  - a[l -kK1(k)] = w(k), (21) 
which is independent of r .  We denote the limit in (21) by the parameter w(k). In this 
small-displacement limit, (19) reduces to the linear system 

!% = -wy-AUsin(Qt), - dr - - w~+AUcos(SZt), dt dt 

where we recall that w ,  52 and AU are all constants. The system (22) admits a multiply 
periodic solution of the form 

where we call w(k) the interaction frequency and 52 the system rotation frequency. The 
solution (23) shows that a periodically oscillating solution is obtained for small vortex 
separations r ,  corresponding to a regime in which the vortices oscillate about each 
other with frequency w(k),  given by (21), and rotate as a system about some common 
centre with frequency 52 (as observed in figure 4). The maximum vortex separation is 
proportional to ( A U )  (52+w)/ (522-w2),  so that when either AU is large or 52 and w 
approach each other (which corresponds to a resonant interaction of the three-vortex 
system), the separation distance r between the vortices will no longer be small. Such a 
case is demonstrated by our previous calculations with three circular vortices shown in 
figure 5 ,  resulting in tearing of the initially aligned vortex pair. 

5. Results for three deformable vortices 
In this section, we use the contour dynamics and discrete vortex methods described 

in $5 3.1 and 3.2 to examine the deformation of the vortex core caused by the induced 
baroclinic velocity of the vortices, and the effect of core deformation on vortex tearing. 
Most of the calculations are performed using contour dynamics, but discrete vortex 
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FIGURE 6 .  Vortex contours for a non-tearing case with the same parameter values as in figure 4, but 
computed with the contour dynamics method. The upper- and lower-layer vortices are denoted by 
solid and dashed curves, respectively. The frames are shown at the following times: (a) t = 0, (b) 80, 
(c) 160, (d )  240, (e) 320, (J) 440. 

simulations are used in cases where the vortices become very deformed or break up. We 
also examine the influence of various parameters, such as k,  8 and q1/q2, on the vortex 
motion in both the tearing and non-tearing regimes. In all cases examined, it is found 
that the two initially aligned vortices remain close to each other for all time if AU is 
less than some critical value AUcrit and that the vortices exhibit large separation for AU 
greater than this critical value. However, the degree of vortex deformation during the 
motion, and subsequently the critical value of AU, is somewhat affected by the values 
of the dimensionless parameters governing the system. 

Typical vortex behaviour observed for low values of k (k < 1) is shown in figure 6 
at six different values of time for the same parameter values as used in plotting the 
paths of three circular vortices in figure 4. In figure 6 ,  as well as in subsequent 
calculations done with contour dynamics, the contour of the upper-layer vortex is 
denoted by a solid curve and that of the lower-layer vortex by a dashed curve. The third 
vortex, which is not shown, generates a current from left to right (initially) which is 
stronger in the upper layer than in the lower layer. The circulation of the vortices is 
counterclockwise in all cases. We see that initially the upper vortex is carried 
downstream by the current, but that the mutually induced motion of the two vortices 
causes them to rotate counterclockwise about their mutual centre. As this rotation 
continues, the upper-layer vortex is carried upstream (against the current) and the 
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F~GURE 7. Vortex contours for a tearing case with the same parameter values as in figure 5 .  The 
frames are shown at the following times: (a) t = 0, (b) 80, (c) 160, ( d )  240, (e) 320, cf) 360. 

1' .*' (c) 

FIGURE 8. Vortex paths for the tearing case shown in figure 7 computed with the contour dynamics 
method. The vortex locations at the six frames in figure 7 are denoted by symbols marked on the 
curves next to the corresponding frame letter. 
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FIGURE 9. Vortex contours for a non-tearing case with S = 0.1 and other Darameters as in figure 4. 
The frames are shown at the following times: (a) t = 0, (b) 80, ( c j  160, ( d )  240, (ej 320, 
cf) 380. 

lower-layer vortex is carried downstream, until after a while the upper-layer vortex is 
upstream of the lower-layer vortex. The current then carries the upper-layer vortex 
back downstream until the two vortices are exactly on top of each other at t = 440. The 
relative motion of the two vortices seems to be periodic in time, although the vortex 
pair as a whole is transported in the direction of the current (in a rotation about the 
third vortex) during each period of oscillation. It is also observed that the vortices 
maintain a nearly circular shape throughout the motion. 

A case demonstrating tearing of the vortices is show in figure 7 for the same 
parameter values as previously used in figure 5 for circular vortices. The paths of the 
centroids of the vortices are plotted in figure 8, and the vortex locations at the six 
different times shown in figure 7 are marked by symbols. Because of the rotation of the 
vortex system about the third vortex, the current acts nearly from right to left in frame 
cf) of figure 7, whereas it initially acts from left to right in frame (a). In the case in 
which vortex tearing occurs, the upper-layer vortex rotates more rapidly about the 
third vortex than the lower-layer vortex. The vortices are again observed to remain 
nearly perfectly circular and the results correspond closely to those shown in figure 5 
of the previous section. 

As the parameter k is increased, the oscillation frequency w(k) of the initially aligned 
vortex pair is predicted from the linear theory of the previous section (equation (21)) 
to increase. The critical current difference similarly increases as the value of k increases, 
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FIGURE 10. Vortex paths for the case shown in figure 9 with 6 = 0.1, showing uneven vortex 
displacement and reduction in LI for small values of 6. The curves and symbols have the same meaning 
as in figure 4, and the computation was stopped at t = 3600. 

but there is no other qualitative difference in the results from those already shown. We 
have previously noted that for larger values of k (e.g. k > 1) the current difference 
between the layers becomes extremely small for d >> 1 since K,(kd) decays exponentially 
for large kd, and so the investigation in the present section is restricted to small k- 
values. It is known that baroclinic vortex pairs with k > 1 and appropriate values of 
separation between the vortex centroids can exhibit an ‘alignment’ process, similar to 
a vortex merger in two-dimensional flow, which causes a great deal of deformation of 
the vortices (Polvani 1991). While we are able to match Polvani’s computations with 
k > 1 using our contour dynamics code, the range of k-values used in the present 
vortex tearing calculations is too small for the alignment process to occur. 

The effect of relative layer depth on the vortex motion is illustrated in figure 9 for 
the case of a shallow layer overlying a much deeper layer, with 6 = 0.1 and all other 
parameters the same as in figure 4. The results in figure 9 appear to be very similar to 
those shown in figure 6 with equal layer depths, although the displacement of the pair 
as a whole is substantially less for the S = 0.1 case than for S = 1 even though the 
imposed currents in each layer from the third vortex are the same. The paths of the 
vortex centroids (computed with circular vortices) for 6 = 0.1 (shown in figure 10) 
contrast markedly with that calculated for the 6 =  1 case (shown in figure 4), even 
though all other parameters are the same. In comparing figures 4 and 10, it is noted that 
the time period required for oscillation of the pair of initially aligned vortices is fairly 
close in the two cases ( t  = 440 for 6 = 1 and t = 380 for 6 = 0.1) and in both cases 
somewhat above the value predicted by (21) using the linear theory for k = 0.2 ( t  = 
280). The strength of all the vortices are also the same in both cases, such that the 
circulation of the third vortex is about four times greater than that of the two initially 
aligned vortices. It is therefore strange to observe in figure 10 that the third vortex has 
moved a much longer distance than the two weaker vortices, whereas in figure 4 the 
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FIGURE 11. Vortex paths with AU = 0.0125, which is just below the critical value 0.0138, showing 
increase of the vortex interaction period as AU approaches the critical value. All other parameters are 
the same as in figure 10. The computations are stopped at t = 2400. 

weaker vortices move a longer distance than the stronger third vortex, as would be 
expected. This difference arises from the fact that the upper-layer vortex must ‘drag 
along’ the lower-layer vortex in the non-tearing regime, through their baroclinic 
interaction, such that the separation distance between the two vortices remains small 
during their mutual rotation about the third vortex. When 6 = 0.1 , the lower-layer 
vortex is much deeper than the upper-layer vortex, which causes the pair as a whole to 
rotate more slowly about the third vortex than in the case with equal layer depths. The 
upper-layer vortex also exhibits larger amplitude motion during oscillation of the 
initially aligned vortex pair than the lower-layer vortex, which results in the ‘bumpy’ 
appearance of the solid curve in figure 10. 

Vortex paths are shown in figure 11 for a case with the same parameter values as in 
figure 10, but a value of current difference (AU = 0.0125) that is just below the critical 
value (AUu,,,, = 0.0138) for this case. This critical value of AU for the case with 6 = 0.1 
is somewhat higher than for 8 = 1 (see figure 5) since the rotation frequency 52 about 
the third vortex is less. It is generally observed that the oscillation period of the initially 
aligned vortex pair increases substantially above the value predicted by equation (21) 
of the linear theory as AU approaches the critical value AUCrit, and the oscillation 
period approaches the linear theory prediction for AUmuch less than the critical value. 
This effect is clearly apparent in figure 11, in which the oscillation period of the pair 
has increased to about 600 from the linear theory value of 280 for k = 0.2. 

The effect of a difference in vortex strengths is illustrated in figure 12 using the 
contour dynamics method for the case in which the upper-layer vortex is much weaker 
than the lower-layer vortex (q1/q2 = 0.05) and all other parameters the same as in 
figure 4. (Note that the scale of the last two frames in figure 12 is different from that 
of the first four frames.) The same case is shown using the discrete vortex method in 
figure 13, but for longer times. Comparison of frames (b) and (c) of figures 12 and 13 
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FIGURE 12. Vortex contours for a tearing case showing deformation of the surface vortex for the case 
qJq2 = 0.05. All other parameters are as in figure 4. The frames are shown at the following times: 
(a) t = 0, (b) 42, (c) 168, (d)  294, (e) 378, (J) 420. The x , y  scale is reduced for the last two frames. 

shows excellent agreement between the predictions of these two methods. It is found 
that the (stronger) lower-layer vortex appears to remain almost circular, whereas the 
(weaker) upper-layer vortex becomes extremely deformed during the motion. This 
deformation is believed to initially occur because of the strain imposed on the weaker 
vortex either by the baroclinic velocity induced by the stronger vortex in the lower layer 
or by the much stronger, but farther away, third vortex. In the last three frames of 
figure 13, the weak upper-layer vortex is observed to deform into a vortex sheet and 
to wrap about the strong third vortex. It is shown by Moore & Saffman (1971), for the 
two-dimensional case with no Coriolis force, that a vortex in a straining flow becomes 
deformed by the external straining, and if the strain rate is above a critical value the 
vortex core will become unstable and elongate indefinitely. It is a simple matter to show 
that the l / r  velocity dependence external to a vortex core in the usual two-dimensional 
flow exerts a potential straining flow on other vortices in the flow field, and this fact 
was used by Moore & Saffman (1975) to model vortex pairing in a turbulent mixing 
layer. It is reasonable to expect a similar type of core instability to occur between two 
vortices in different layers in a geostrophic flow, since both the baroclinic and 
barotropic induced velocities of the vortices approach a l / r  dependence as the vortices 
move far apart from each other. 
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FIGURE 13. Discrete vortex simulation of the case shown in figure 12 with qJq2 = 0.05, but for longer 
times. The frames are shown at the times: (a) t = 0, (b) 42, ( c )  168, (d) 420, (e) 462, cf) 840. 

6. Results with non-uniform background potential vorticity 
Tearing of a two-vortex system due to interaction with a third vortex was studied in 

the previous two sections. In the current section, we consider vortex tearing due to 
some ambient current difference between the layers which is maintained by a 
background non-uniform potential vorticity field, as given in (8). A secondary flow 
about the vortices is therefore generated by the rearrangement of the background 
potential vorticity field by the vortices. 

In order to understand the nature of this secondary flow, we first consider the flow 
caused by a single vortex (but no current) in the upper layer and a current in the 
negative x-direction (but no vortex) in the lower layer. Runs were made using the 
algorithm described in 8 3  for cases with the parameters k = 6 = qJq2 = 1 and current 
differences of AU = -0.1 and AU = - 1. Contour plots for the secondary vorticity field 
qsl in the upper layer are shown in figure 14(a) at t = 2 and in figure 14(b) at t = 14. 
The contours appear as a dipole which is distorted slightly in the direction of vortex 
rotation. The secondary potential vorticity contours for AU = - 1 and those for the 
lower layer with AU = -0.1 appear qualitatively similar to those in figure 14(a, b). 
After an initial transient period, the contours of qs seem to achieve a nearly steady 
state. This trend toward a steady asymptotic state can be observed both from the 
contour shapes and from plotting the maximum values of qsl with time, as shown in 
figure 15 for both AU = -0.1 and AU = -1. The maximum values of q9 in the 
asymptotic state seem to be of the same order of magnitude as AU and to vary nearly 
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FIGURE 14. Secondary potential vorticity contours in the upper layer for the case of a single vortex 
(but no current) in the upper layer and current (but no vortex) in the lower layer. The plots are for 
k = 6 = qJq2 = 1 and AU = -0.1, and the times in (a) and (b)  are t = 2 and 14, respectively. 
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FIGURE 15. Maximum values of the secondary potential vorticity qSl in the upper layer in the single 
vortex case as a function of time for AU = - 0.1 (dashed-dotted curve) and AU = - 1 (solid curve), 
with k = S = q1/q2 = 1. 
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FIGURE 16. Predicted values of the critical AU for the case in which the secondary flow is neglected. 
Solid curve is obtained from the model equation (24) and the data points are from contour dynamics 
calculations with qJq2 = 1 and the following values of layer depth ratio: +, S = 1; 0, S = 1; 
*, s = 0.1. 
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FIGURE 17. Example of a case with no vortex tearing, which includes the secondary flow, for the 
parameter values k = 6 = q1/q2 = 1 and AU = 0.1. Frames are shown at the following times : (a) t = 
0, (b) 12, (c) 24, ( d )  60, (e) 84, (f) 132. 

proportionally with AU, as would be expected from (9). We also mention that the 
vortex core remains nearly circular for AU = -0.1 but deforms somewhat in the 
direction opposite to that of the current for AU = - 1 .  The vortices do not appear to 
move significantly during the calculations, which typically covered about five rotation 
periods of the vortex. These results thus differ from those for a vortex in a beta-plane, 
for which case drifting of the vortex is observed (Reznik 1992). 

We note that for sufficiently small AU (AU 4 1) and for 0(1) values of ql /q2 ,  the 
secondary potential vorticity qsn is very small compared to the potential vorticity q1 or 
q2 of the vortices. Motivated by this observation, we consider a simple model (similar 
to that given in 54) in which the vortices are assumed to be circular and the secondary 
flow associated with qs is neglected. The governing equations of this model for a 
separation [ in the x-direction and 7 in the y-direction of the upper- and lower-layer 
vortices are 

dE - = -q f ( r )+AU,  9 = [ f ( r ) ,  
dt dt 

wheref(r) is defined by (20). It is noted that only two parameters, AU and k, affect the 
vortex separations in (24). In the small-displacement limit, this system reduces to 
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FIGURE 18. Example of a case, with secondary flow, where AU is just above the critical value for 
tearing from figure 16. The parameter values are as in figure 17, but AU = 0.15. Frames are shown 
at the following times: (a) t = 0, (b) 6,  (c)  18, ( d )  30, (e) 54, cf) 90. 

where w(k) is given by (21). Equation (25) admits a periodic solution of the form 

l(t) = (AU/w)sin(wt), r(t) = -(AU/w)cos(wt)+(AU/w), (26) 
such that the maximum separation of the vortex centroids is rmaz = 2(AU)/w. The 
nonlinear system (24) was integrated using a fourth-order Runga-Kutta method for 
various values of k (in the range 0 < k < 2) to find the critical value of AU for vortex 
tearing. The results of these computations for AU,,.,, are shown by the solid curve in 
figure 16, as well as a few numerical data points obtained from the contour dynamics 
method (neglecting the secondary flow) for deformable vortices. The computations are 
restricted to k < 2, at which point the predicted AU,,,, has increased to 0.2, since the 
neglect of the secondary flow is not valid for large AU. 

Computations of vortex tearing which include the effect of the secondary flow were 
also performed, using the alternative algorithm based on Green’s functions described 
in 63.3, and the results were compared to those without the secondary flow. For cases 
with AU well below the predicted critical value in figure 16, the vortices are observed 
to oscillate about each other (as shown in figure 17 for k = 6 = ql /q2  = 1 and AU = 
O.l), but not to return to the initial state in which one vortex lies on top of the other 
at the end of the period, as was observed to be the case without secondary flow (recall 
figure 6). For AU slightly above the predicted critical value in figure 16, the vortices still 
seem to rotate about each other, but the separation distance between the vortices 
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increases dramatically (as shown in figure 18, for the same parameter values as in figure 
17 but with AU = 0.15). There does not appear to be a clear bifurcation between the 
tearing and non-tearing states, as was the case without secondary flow, but instead the 
vortices oscillate with a separation distance that appears to increase with time. The 
calculations were stopped when the vortices got too close to the edge of the grid, so the 
long-time behaviour of the system is not known. For yet higher values of AU, 
considerably above the critical values given in figure 16, the vortices tore apart with 
only slight deflection from the baroclinic induction. 

7. Conclusions 
This study uses the two-layer quasi-geostrophic equations to determine conditions 

under which a vortex can extend through two layers, in which there exists a current 
difference between the layers, without large separation of the parts of the vortex in the 
different layers. The ability to withstand current variations along the vortex core, 
sometimes of an order of magnitude or more, is a commonly observed feature of strong 
geophysical vortices such as cyclones and ocean rings. 

We have found that the dynamics of the vortex tearing process depends on the way 
in which the current difference is maintained. For cases in which the current difference 
is generated by a third vortex, both analytical and numerical results have been obtained 
which show that if the current difference A U between the layers is below a critical value, 
the two initially aligned vortices will oscillate periodically about each other with only 
a small separation of their centroids. The vortex separation decreases as the current 
difference AU decreases, such that if AU is small enough a vortex might appear to 
simply extend through the two layers with little observable effect of the current 
difference. For values of AU above the critical value, a bifurcation occurs in which the 
separation distance between the vortices becomes large and the vortices are said to be 
torn by the current. 

The effects of unequal layer depths and unequal vortex strengths are studied by 
variation of the parameters 6 and q l /q2 .  It is found that the relative layer depth affects 
the rotation rate 52 of the initially aligned vortices about the third vortex, which 
subsequently influences the critical current difference AU,,, for tearing to occur. A 
difference in strength between the upper- and lower-layer vortices, on the other hand, 
can have a strong effect on the vortex deformation, causing the weaker vortex to 
become greatly deformed due to the baroclinic induced flow from the stronger vortex. 
For most cases examined with vortices of nearly equal strength, however, the vortices 
remain nearly circular during their motion and a simple analysis based on perfectly 
circular vortices convected at their centroids yields results in good agreement with the 
more exact contour dynamics calculations. 

Examples are also considered in which the current difference is generated by a non- 
uniform ambient potential vorticity in the two layers. In this case, a secondary flow 
occurs due to the redistribution of the background potential vorticity by the vortex 
flow. This secondary flow is found to have only a slight effect on the vortex tearing 
process for small values of AU. 

A more detailed study of the effect of non-uniform background potential vorticity 
than we have offered here is probably necessary in applying this work to many oceanic 
or atmospheric flows. In particular, the secondary flow caused by the beta-effect may 
have a significant influence on the critical current difference for tearing for vortices of 
large horizontal dimension. Also, in many geophysical problems the current difference 
to which vortices are subject is generated by shearing, such as for wind-driven currents 
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in the oceanic surface layer or for atmospheric flows within the planetary boundary 
layer. If the shearing causes a substantial change in potential vorticity during a period 
of oscillation of the aligned vortex pair, the analysis in the paper may not apply. A final 
shortcoming of the paper is that many vortices that resist tearing in the oceans and 
atmosphere are quite strong and are not well described by quasi-geostrophic dynamics. 
It may therefore be necessary to incorporate ageostrophic effects to accurately describe 
tearing of such vortices. 

While there is obviously a great deal of work that can be pursued in this topic, the 
basic vortex interaction which gives rise to the ability of a vortex in a stratified quasi- 
geostrophic flow to withstand a current difference along its axis is clearly brought out 
in the present paper, and we expect that this mechanism will not be qualitatively 
changed by further complication of the flow. Moreover, the specific predictions of the 
present paper seem to be reasonable for geophysical flows. For example, in a two-layer 
model of a tropical oceanic flow, typical values of k and 6 are about 0.8 and 0.05, 
respectively. If we take the values of q for the upper- and lower-layer vortices as equal, 
the critical value of the dimensionless current difference between the layers (for the case 
where the current is maintained by a non-uniform background potential vorticity field) 
is about 0.12. Recalling that current is non-dimensionalized by the product Rq in this 
case, where R is the vortex core radius, it is found that tearing of the vortex pair occurs 
when Rq is less than about eight times the ambient current difference between the 
layers, and no tearing occurs if Rq is greater than this value. The analysis thus confirms 
what one might intuitively expect, that stronger and wider vortices are more able to 
resist tearing by a current difference than weaker, thin vortices. Since the maximum 
velocity magnitude u,,, in a vortex is about :Rq (for a Rankine vortex) and taking a 
typical value of ambient current difference AU of about 0.1 m/s for oceanic flows, we 
find that an oceanic vortex will be able to resist tearing if u,,, is above about 0.4 m/s, 
which might be expected in strong ocean rings. 
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